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An approximate method is developed for calculating heat transfer at a vertical surface in free convection 

with uniform inward and outward porous flow and a laminar boundary layer. Design formulas are given, 

and the results obtained are analyzed. 

Various means of cooling are now being used to protect structural dement s  from overheating, the most common 

being transpiration cooling by inject ing gas into the boundary layer. Whereas numerous methods of calculat ing this kind 

of cooling have been developed for forced convection, the same cannot be said of natural convection. 

Let us examine a vertical porous surface at a constant temperature T w. Suppose a plate is located in a stationary 

fluid, whose temperature at a large distance from the wall is %o. Let T w > Too (the argument is unchanged if T~ > Tw)o 

Fluid is supplied through the porous plate i t  a velocity v w constant over the whole surface. The added fluid has a 

temperature equal to that of the wall T w and the same physical properties as the principal medium. 

The boundary layer equation may then be written as: 

Ou Ou 32u 
u - -  + v . . . . .  g ~ ( T - - T o o )  q - , ~ - - ,  (1) 
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OT OT O~T 
u - -  + v  . . . .  a - - ,  (2) 
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Let us assume that all  the physical properties of the fluid are independent of temperature, and that the dissipation , 

term in natural convection is negligibly small. 

The boundary conditions are: 

when Y = 0 

when g ---- co 

u = O, V ~--- Vw, 

u = O ,  T =T~ .  

T =- T~; 
(4) 

Integrating (1)-(3) over the boundary layer thickness 6(x), and taking into account boundary conditions (4), we 

obtain the integral relations 

d u~dg = g ~ 0 dy - -  v 
dx  , y=0 

0 0 

(5) 

d (~ u d y  = - a -]- v~oOa. (6) 
dx  g=0 

0 

In (5) and (6), 0 = T - - T o o  and 0 w = Tw-- T~ for the case T w > Too; O = Too - - T  and 0 w = T ~  - - T ~  
when T w < Too. For inject ion v w has a positive sign, and for suction a negative one. 

We shall use the Karman-Polhausen method to solve (5) and (6), and take the velocity and temperature profiles 

in the boundary layer in the form of fourth-degree polynomials: 

{+i  t§ 4 u = a  o-}-al + a ~  -Fa3 -Fan ~ , (7) 
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To find the coefficients in (7) and (8), we use the boundary conditions: 

(8) 

when y = O  u = O ,  

T = Tw, 

when 

OT = a [  O~T 

Ou 02u 
y = 8  u = 0 ,  ~ = 0 ,  

Oy O f  

OT 02T 
T - - T ~ ,  - -  = - - = 0 .  

Og 092 

(9) 

Using (9), we obtain the following expressions for the velocity and temperature distributions in the boundary layer: 

tt = 1 
(6,, + v ~ )  

(lO) 

12a ~ _  . -t- 
0 --= O~ 1 (6a + v~ ;) (6a + v~ ;) 

(6a + v~ g) (6a + vw g) " (11) 

Replacing u and 0 in (6) by the corresponding expressions determined from (10) and (11), and integrating over the 
limits 0 to 5, we obtain a differential equation relating the boundary layer thickness to the coordinate x and the injec- 
tion (or suction) velocity: 

d g~0~; a (66a -t- 15v~ 8) (12a ~ -q- 6av~a -t- vw 82) 
dx 504 (6`0 + v~ ~) (6a + vw ~) = 0w g (6a -t- vw ~) (12) 

The solution of (12) has the form 

15 2 
~, 504 ] vw 

-5 (24 a -I- 90`0) ~ -F ~ In 6 q- Pr + 
Vw Vw 

) + - - g -  In 1 2 +  6 v ~  P r +  v282 Pr 2 - -  
UN `0 "02 

.Vr~_ ; Pr  -t- 3 --  const = x, (13) 
) U w `0 

where 

const = ( g ~ 0 ~ l  1 . 7 9 2 ( A + B 1 )  0.166B, 

~, 504 ] ' t  v~ v~`0 

0.5716C 0.6048 D Pr  ] 
2 + 

Vw V w ̀0 ) 
(14) 

Expression (13) contains an implicit expression for the dependence of the boundary layer thickness 5(x) on the 
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injection (or suction) velocity. 

The coefficients A, B1, 
equations: 

B2, C and D are solutions of the following inhomogeneous system of linear algebraic 

A - ~ B I @  1 C = - - 3 6 0 a  2 1 . 
3 '  7 

Vw Vw 

( 6 a +  1 2 , , ) A - p ( 1 2 a - - F 6 , ~ ) B ~ + B 2  ,4 -D- t  ( 1 2 , ~ + 6 a ) c  = 
Vw 

1 
- -  3 ( - -  1008a3 - -  2376a2 ~ -+- 864a  v 2 + 3240'~3); 

Vw 

( 12a 2 + 72a ~ + 36 v 2) A @ (48a 2 + 72a v) B~ + 12aB2 + (I2 "~ + 6a) D + 

(72a + 36 1 
§ ,~ ,d- C = ---5- ( 5616a  3 v -t- 10368a 2 ~2 4- 38880a  ,,3 4- 1728a4); 

o w 73w 
(15) 

( 144a 2 ~ + 21@ ,?') A § (72a ~ q:- 288a 2 ~)B~ + 48a2B2 + (72a., + 86 ~2) D + 

@ 216a ~2 1 
- -  C = --5- ( 20736a4 ~ 4- 41472a3 ~ + 155520a ~ ~3); 

U w Vw 

2592a 3 v ~- (24a + 90 ~) 
432a -~ ~ A --t- 432a ~176 v B1 + 72a3B2 -t- 216a v 2 D = 

3 
Ow 

(15) 

In order to obtain from (18), bearing in mind (14) and (15), an explicit expression for the boundary layer thickness 
as a function of  the injection (or suction) velocity and the coordinate x, let us write the left hand side of (13) in the form 
of a Maclaurin series. 

Denoting the left hand side of (13) by F (g, vw, Pr)  for a fixed injection (or suction) velocity v w and Pr number 
we have: 

E an f(n) Pr), (16) F (g ,  vw, P r ) =  ~ (; = 0, v~, 

n=0 

where [ca) (g = 0, vw, P r )  is the n-th derivative of the function F(8 ,  v~, Pr)  with respect to 8. 

The first four terms of (16) vanish while the fifth and subsequent terms are nonzero. For v w > 0, the even terms 
of the series, beginning with f(41 (g ~. 0, vw, Pr) ,  are positive, while the odd terms, beginning with f(s) (g = 0, v~, 
Pr)  are negative. In the suction case (v w < 0) all the terms of (16) are positive. 

Through transformation of the power series, the boundary layer thickness may be obtained in explicit  form as a 
function of the coordinate x for a given injection (or suction) velocity. 

For large injection (suction) velocities (16) diverges, and it is therefore necessary to determine the radius of 
convergence as a function of the injection (suction) velocity for each Pr number. 

Let us denote the maximum injection (suction) velocity for which (16) converges by Vw max" Then, for Pr = 0.72 

and Pr = 1.0, the series converges if the quantity ] v w max 6 / v  ] entering into the remaining term, is less than 8.46 or 
2. 15, respectively. 

By estimating the remaining term in expansion (16) it is possible to l imit  the calculations to the first two nonzero 
terms. The error in boundary layer thickness evaluated from only two terms of (16) in this way does not exceed 10%, if 
the injection (suction)parameter determined by (21') lies within the following limits: 

"6 ---" 4- 0.75 for P r  ----- 0.72, 

~l = -< 0.70 for P r  = 1.0. 

Bearing these remarks in mind, we have 
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o r  

Since the term 

g = ( g ~ 0 ~ - ~  xV , 504"4! ~'x X 
\ ,~2 ] f(4) (g = O, V~, Pr) / 

Re~ f(5) (; _= O, v~, Pr) 5 [ (4 ) (g=0 ,  v~,, Pr) 
is less than unity, we obtain 

5 [(4)(~ = O, vw, Pr) 

( .~_)  ( 5 0 4 . 4 ! ) ~ (  R e ~ f ( s ) ( a = 0 ,  v~, P r ) )  
= Gr~-~4 , f(4) g = 0, v~, Pr) 1 -}- 20 /(4) (g _._ 0, vw, Pr) 

( @ )  ~ G r ~  ~ ( 504-4!  X 
[(41 (~ ~_ -0, v~, Pr) , 

(17) 

(18) 

In (17), (18) and 

B., 4I 

v~ ~ 6 ~ 

fls~(a O, v~, 

X ( 1 - -  f(s) (~ = O" vw' Pr) Re~(Grx/4)-~ ) -~. 
20 i~4-f(4) (g = 0, %, Pr) 

19) Grx = g ~IO~xa/~ 2, Re~ = v~, ~/,,, Re,. = v~x/~ and 

504 ] t v~ 64 v~. 64 

- -  -k pr2 [2304C Pr 2 + 576C P P  - -  432 (vJ~) D Pr~ 

v~(12 + 6Re~ Pr  4- Re~ Pr~P / 

p r ) =  ( g ~ 0 ~ ( v _ _ z ~ / a ] A P r 5 4 !  B, 4! B.,5! 
\ 5 0 4 ] \  ,~ / t % 6 ~  4 - - - b  . " 6 ~  vw'65 :'~, 

q_ PF- [--  41472C Pr 3 - -  12096C Pr ~ 4-. 3456 (vJ.~) D Pr~l 

v~ ( 12 + 6Re~ Pr  + Re~ Pr"p t" 

We shall denote the product Rex(Grx/4)- 

+ 

by ~ and call it the injection (suction) parameter, 

(19) 

(2o) 

(21) 

= Rex (Grx/4)- ~.  

The quantity 71 in (21') coincides with the variable g of [3]. 

The local heat transfer coefficient is determined from the relation a----- 

less form: 

x grad 0 
Nu.  = (T~ - -  To~ ) 

(T~ -- T~) 

(21') 

grad 0 la or in dimension- 

(22) 

Substituting in (22) the value of the temperature gradient at the wall from (11), we have 

x )  12 
N u ~ =  -~o ( 6 + R e ~ P r )  

Substituting in the last equation the boundary layer thickness 6 from (19), we obtain 

[ N u ~ =  12GrJ f(4) (~ = 0, v~, Pr) 

[(0 5044: 
+ f(4~(; O, v~, Pr) 

X P r - -  

When v w = 0, (24) becomes 

Nux. ~ -  'x =-= 7Llr x 

1 -- ~f(5) (~__ O, v~,, Pr) ] 
2o = o, Pr)  • 

10f (4 ) (~=0 ,  va, Pr)J .~-~-/ " 

504.4! I-IX 
f(41 (~ = 0, v~, Pr) 

(23) 

(24) 

(25) 

which coincides with Polhausen's exact solution [7] for a laminar boundary layer and natural convection at an im- 
permeable surface. 
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Let us use (25) as a standard in determining the influence of injection (suction) on heat transfer in natural con- 
vection. 

The dependence of Nux/Nux0 on the inject ion (suction) parameter "q = Re.(GrJ4)-'a. is given in Fig. 1. 

The authors of [3] obtained a computer solution in the form of an infinite series, as in [2], and confined them- 
selves to the first term of the expansion, which leads to discrepancies of 10%, compared to our results, for the maximum 
suction velocity (~ = - 0.8) and 4. 5% for injection. (~ = 0.8). 

Our results show good agreement with those of [2] and [3]. 

k -/.8 " 

_ l ' % l  o, e a q 
-a~ -a2 I l I 

Fig, 1, Influence of inject ion (and 
suction) on local  heat transfer in 

natural convection: v w = const, 1 - 
according to (24) With Pr = 1.0, and 

2 -  with Pr = 0.72; 3 - accordin~ 
to [3], with Pr = 0.72, v w , , ~  X -1"4,  

T w = const; 4 -- according to [2], 

with Pr = 0.72. 

It can be seen trom Fig. 1 that the influence of inject ion (suction) on 
heat transfer increases with the Pr number. 

Transforming (19) into 

(+)=(+)(1 
__ f(~) (~ = 0, v~, Pr) 

4 - -  J 2 0 ~ 4 f l 4 ) ( 8  __ 0, v~,, Pr) ~q X 

,-, ,~ ( 5 0 4 . 4 ,  ) - ~  
X ur .  , f(4) (~ _~_ 0, Ow, Pr) (2G) 

and substituting the latter in (11), we obtain the dimensionless temperature 

distribution in the boundary layer for inject ion and suction. This dependence 

is shown in Fig. 2a as a function of the coordinate ~ = ( ~ Y X ) ( ~ - ~ )  �88 

for various values of the inject ion (suction) parameter and Pr = 0.72. The 

data of [3] are also included in Fig. 2a for comparison purposes. ' 

The influence of the Pr number on the temperature profile is shown in 

Fig. 2b in the same coordinates, together with Polhausen's exact solution [7] 

for v w = O. 

38 

a2 ~! t 

1 
s ~.3 ,!5 2O & 

g \ 

. z . \ ' ~  

O.5 /.a g 2,0 & 

Fig. 2. Temperature distribution in boundary layer cp = ~/0: a - according 

to (11) solid line for Pr = 0.72, dotted l ine according to [3]; b - solid l ine for 

Pr = 0.72, dotted line for Pr = 1.0 according to (11), and dot-dash line ac-  

cording to [7] for ~ = 0. 1 - ~ =  0.6; 2 - 0 . 4 ;  3 -  0 ; 4 - ( - 0 . 4 ) ;  5 - ( - 0 . 6 )  

The dimensionless temperature profiles for inject ion parameters 71 ~ 0.6 and above have a point of inflection, 

which is in complete qualitative agreement with the analogous case for forced convection. 

The velocity distribution in the boundary layer may be obtained from (26) and (19) after substitution in (10), and 

in dimensionless form this may be written: 

ux/v I 504"4t ] ~ .  �9 " X 
G-~ = ~  f(41(; 0, vw, Pr) 
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( f(5> (g = 0, v~,  Pr)  

X 1 - - 5  1 - -  20 r (& --- 0, vw, 

{  .rr ] 
X 6 + - ~ L  f(4)(;----o, v~, pr)  

0 0.5 t.O t.5 2.0 2.5 

Fig, 3, Velocity distribution in boundary layer 
according to (27) for Pr -- 1 . 0 : 1  - 7/ = 0,6; 2 -- 
0,4; 3 - 0 . 2 ;  4 - 0 ;  5 - ( - 0 . 2 ) ;  6 - - ( - -0 .4 ) ;  7 - 
( - 0 . 6 )  

,)[  o4.4, ]-.}. 
Pr)  f(4) (8 ---- O, v~,, Pr )  

3 ~q /(s) (~ = 0, v~,, Pr)  / - I  

Fig. 3 shows the dimensionless velocity 

(27) 

_(7) Or:" 
at various values of the injection (suction) parameter ~ for Pr = 1.0. 
It can be seen that with increased injection the velocity profile 
becomes fuller, and the maximum velocity and its distance from 
the wall increase, For suction the picture is reversed - the veloci ty  
profile becomes less full, and its maximum fails and moves closer 
to the wail. This behavior of the velocity profile affects the tan- 
gential stresses. 

Knowing the velocity distribution in the boundary layer, we 
can calculate the shear stress at the wall from the equation: 

= ~ ay jy  o" 
(28) 

If we put the injection (suction) velocity equal to zero in all 
the above calculations, we obtain the results for free convection at 
an impermeable wall. For example,  according to (17) and (21) the 
boundary layer thickness and the heat transfer for Pr = 0.72 will be 

(~/x) = 5.42 G r 2  '~ [ 1 0.268 Rex ( G r J 4 ) - ' ~  ] -1 ,  (29) 

= - . . . .  Gr,~ Nux U.3bu x [1 - -  0 , 2 6 8 R e x ( G r J 4 ) - ~ 1 2 [ 1  + 0 . 1 9 2 R % ( G r x / 4 ) ' ~ ]  -x .  (30) 

When v w 0 (~/X)o -= 5.42 Gr~- ~ and NUxo = = 0.369 Gr  x , which is 2 . 7 9  different from the exact solution [7]. 

Finally, we shall consider how the temperature and velocity profiles, substituted in (5) and (6), affect the final 
result for local  heat transfer. 

For this purpose we take the temperature and velocity distributions in the form of third-degree polynomials satisfy- 
ing the boundary conditions (9), instead of (7) and (8). We then have: 

(4v-+- v ~ )  ~ ; (31) 

[ 6. (+) (+).+ 
0----09 1 ( 4 a + % 8 )  ( 4 a §  

(4a -Jr v~ 8) 

Substitute (31) and (32) in (5) and (6). Then (19) and (20) take the form: 

,,o4, ]. 
= f(4) (8 = 0, v~,, Pr )  • 

X G r 7 ~  [1 _ f m ) ( ~ = 0 ,  v~,, P r ) R e , ( G r J 4 ) - ~ ]  - I ,  

20 ~/-~-f(4)(~ _= 0, v=, Pr)  

(+) 6 
NUx = (4 + Re~ Pr)  

For Pr -- 0.72 we shall obtain 

(32) 

(33) 

(34) 

Nux - -  0.36 Gr~ ~ [1 - -  0.353Rex (Grx/4)-  ~ ]~ [1 -k 0.178Res ( G r J 4 ) -  ~ ]-1. (35) 
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The values of f(5) (; = 0, v~o, Pr)  and [(4) (3 -= 0, vw, Pr) in (33) are different from in (20) and (21). ( :om- 
parison of the local  heat  transfer with [3] shows that in this case the discrepancy ~ 17% for maximum suction veloci t ies  

(~ = - 0.8), and ~ 3% for maximum inject ion velocit ies .  

NOTATION 

v w -- inject ion or suction veloci ty;  T - temperature;  ~ - inject ion (suction) parameter;  g - dimensionless coordi-  
nate; ~ - dimensionless boundary layer veloci ty;  Re x -Reynolds  number based on inject ion (suction) veloci ty  and coordi-  
nate x; Re 8 - Reynolds number based on inject ion (suction) veloci ty and boundary layer thickness. 
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